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Abstract
We introduce a method for determining the functional form of the stochastic and dissipative
interactions in a dissipative particle dynamics (DPD) model from projected phase space
trajectories. The DPD model is viewed as a coarse graining of a detailed dynamics that displays
a clear timescale separation. Based on the Mori–Zwanzig projection operator method we derive
a consistency equation for the stochastic interaction in DPD. The consistency equation can be
solved by an iterative bootstrapping procedure. Combined with standard techniques for
estimating the conservative interaction, our method makes it possible to reconstruct all the
forces in a coarse-grained DPD model. We demonstrate how the method works by recreating
the interactions in a DPD model from its phase space trajectory. Furthermore, we discuss how
our method can be used in realistic systems with finite timescale separation.

1. Introduction

The molecular dynamics (MD) method is widely used to
predict and analyze systems described by atomic or molecular
models. Since only a small volume can be simulated, it is
necessary to model how the simulated region interacts with
the surroundings to bring the system into equilibrium. A
device, or in the context of simulations a procedure, that brings
the system to equilibrium is called a thermostat. Depending
on the experimental set-up the appropriate statistical model
of the equilibrated system, the ensemble, is characterized
either by constant energy and volume (NVE—MD without
thermostat), by constant temperature and volume (NVT—
e.g. the Nose–Hoover thermostat [1, 2]) or by constant
temperature and pressure (NPT—e.g. the Andersen [3] or
Parrinello–Rahman [4] thermostat). Apart from attempting to
mimic a specific experimental set-up, the choice of thermostat
might be guided, for example, by how easy it is to derive
different thermodynamic properties.

We can distinguish properties of the system that depend
only on the equilibrium distribution of particle positions and
velocities (e.g. the temperature, pressure, radial distribution
function and the structure function) from transport properties

(e.g. diffusion rate and viscosity). The former quantities
depend only on the relative frequency of different states in the
distribution, and because the dynamics of molecular systems is
usually assumed to be ergodic, thermodynamic properties can
be calculated from time averages over a single simulation run,
rather than averaged over an explicit ensemble.

Transport properties, contrary to equilibrium properties,
are sensitive to the order in which states occur, i.e. to the
temporal correlations. This follows from the Green–Kubo
relations [5, 6], which give the transport properties in terms
of autocorrelations of velocities and forces. The thermostat
determines how the MD system approaches equilibrium,
and its influence on the trajectories in turn alters the
autocorrelations (compared to the constant energy dynamics)
and therefore the transport properties. In addition to altering
transport properties, most thermostats break fundamental
symmetries of the systems, such as conservation of linear
and angular momentum, since they are typically not Galilean-
invariant. This leads, for instance, to a damping of
hydrodynamic modes [7]. In general, any effect of these
thermostats on the statistics is therefore an artifact. In order
to minimize these effects the strengths of the thermostats are
typically chosen small enough that the artifacts can be ignored
and the system size is chosen as large as possible.
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The effective dynamics of a coarse-grained molecular
system has yet another source of dissipative interactions,
compared to a system with only atomistic interactions. If
the underlying system has a pronounced timescale separation,
the thermostat can naturally appear as a result of projecting
away the fast degrees of freedom [8, 9]. MD itself
may also be viewed as a coarse-grained representation
of underlying quantum mechanics, based on the Born–
Oppenheimer approximation. In standard MD the influence of
the electron structure is usually neglected (except in ab initio
MD), and the potentials are fitted to empirical data [10]. It is
an open question whether a more formal coarse graining would
lead to a natural thermostat for MD systems.

The theoretical framework underpinning this view of
the origin of dissipative forces is the Mori–Zwanzig theory
of projection operators [8, 9, 11–13]. Briefly, the theory
explains how the dynamics of a microscopic system can be
mapped to a coarse-grained or mesoscopic level by using
projection operators. An example of a projection is the
mapping of all atomic positions in a molecule to their center
of mass, and their momenta to the average momentum. This
reduction scheme is known as united atoms. Depending on the
projection, timescale separation and the degree of exchange
of energy between the fast and slow degrees of freedom, the
effect of the fast degrees of freedom can either be eliminated
due to averaging, resulting in a deterministic dynamics for
the slow degrees of freedom, or it can result in Markovian
white noise and dissipation, leading instead to a stochastic
dynamics described by a Fokker–Planck equation [14]. Used
in equivalent Langevin-type equations, the drift and diffusion
term in the Fokker–Planck equation naturally defines the
thermostat for the coarse-grained system.

An example of Langevin-type dynamics that can be
coupled to the Mori–Zwanzig theory is the simulation
technique dissipative particle dynamics (DPD). DPD is a
particle-based coarse-grained model with pairwise central
force interactions. The interactions have both a conservative
part and a part given by noise and dissipation. By construction,
the DPD model is Galilean-invariant and can therefore be used
to simulate nontrivial hydrodynamics. It was first suggested
as a simulation tool for complex fluids [15], using soft
conservative potentials. This has been the major conception
of DPD, but it has also been shown that the method is suitable
as an alternative thermostat for MD simulations [7].

An important conceptual shift is introduced if the
dissipative and stochastic forces in DPD do not stem from
interactions with the surroundings of the system but from
interactions between the coarse-grained degrees of freedom
and the degrees of freedom not explicitly modeled. In this
situation, the thermostat should no longer be viewed as merely
a means to make the system approach equilibrium, but as
an integral part of the dynamics, where both the functional
form and the strength of the thermostat are defined by the
projection from the microscopic to the mesoscopic system.
There exists formal coarse-graining schemes resulting in DPD-
like mesoscopic dynamics [16, 17]. The main idea in this
paper is to introduce a practical method for determining the
functional form of the stochastic interactions in the DPD

model from the phase space trajectories of the coarse-grained
system. We apply the Mori–Zwanzig theory to derive a
consistency expression that the stochastic interaction in the
DPD model must fulfill. This result is used to derive a practical
bootstrapping method that can be used with simulation data to
obtain a realistic estimate of the full functional forms of the
effective coarse-grained interactions. In order to demonstrate
the method and test its consistency, we apply it to phase space
trajectories from a DPD simulation with known conservative,
dissipative and stochastic forces.

2. Theoretical analysis

This section describes how the DPD model can be viewed
as the effective dynamics resulting from a projection of an
underlying atomistic dynamics. We begin with a general
review of the projection operator method. We then discuss how
DPD can be used as a specific ansatz for the effective dynamics
resulting from center-of-mass projections of atomistic systems.
We discuss the equilibrium and transport properties separately:
first, for given stochastic forces, we show how the dissipative
force must be chosen to maintain the equilibrium distribution,
and how this relation leads to dissipative forces that respect the
fundamental symmetries of the underlying dynamics. Second,
we show that the combined effect of the stochastic and
dissipative forces is to drive the system to thermal equilibrium
and that the radial dependence of the stochastic forces
determines the rate of convergence to thermal equilibrium. In
summary, this shows that the dissipative and stochastic parts of
the effective coarse-grained dynamics are not arbitrary but are
determined by the underlying dynamics through the choice of
projection.

2.1. Projection operators

Consider a dynamical system

ẋ = f (x, y), (1)

ẏ = ε−1g(x, y), (2)

consisting of fast (y) and slow (x) degrees of freedom, and a
timescale separation indicated by the parameter ε � 1. The
corresponding Liouville operator splits into a fast and a slow
part:

−L =
∑

i

∂

∂xi
fi (x, y)

︸ ︷︷ ︸
slow

+ 1

ε

∑

i

∂

∂yi
gi(x, y)

︸ ︷︷ ︸
fast

. (3)

From the time evolution in density space, ∂tρ = −Lρ,
an effective Fokker–Planck equation for the slow degrees of
freedom can be derived. Following Just et al [11], consider the
adiabatic distribution ρad(y|x) as the stationary distribution of
y when x is considered fixed (changing adiabatically slowly).
Under the assumption of ergodicity, an adiabatic average over
the fast degrees of freedom conditioned on the slow degrees of
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freedom can be defined for an arbitrary function h:

〈h〉ad(x) =
∫

dy h(x, y)ρad(y|x)

= lim
T →∞

1

T

∫ T

0
dτ h(x, η[τ, y; x]), (4)

where η[τ, y; x] is the trajectory of the differential equation
η̇ = ε−1g(x, η) with η(0) = y and x fixed. The ergodicity
relation can be used in a practical situation to derive an
adiabatic average from the detailed trajectory. The reduced
phase space density can now be defined as ρ̄ = ∫

dyρad(y|x),
and the corresponding Fokker–Planck equation takes the form

∂ρ̄t

∂ t
= −

∑

i

∂

∂xi
D(1)

i (x)ρ̄t (x) +
∑

i j

∂2

∂xi∂x j
D(2)

i j (x)ρ̄t(x),

(5)
where the diffusion term is defined as

D(2)
i j (x) =

∫ ∞

0
dτ

〈
δF fi (x, η[τ, y; x]) δFf j (x, y)

〉
ad

, (6)

and we use the notation

δF fi (x, y) = fi (x, y) − 〈 fi 〉ad(x) (7)

as an abbreviation for the fluctuations around the adiabatic
equilibrium. The diffusion coefficient is given by the
autocorrelation of the fluctuations in the fast degrees of
freedom around their adiabatic stationary mean value. This
is the relation that we will use to derive the functional form
of the noise in DPD. At equilibrium, the drift term D(1)

is derived from the diffusion term using the fluctuation–
dissipation theorem.

In the form presented here, the Fokker–Planck equation
represents the global dynamics on the phase space. There
is no assumption that the system should have the structure
of a mechanical system consisting of particles with pairwise
interactions. For the methodology to be useful it is necessary
to adapt it to a situation where an effective particle dynamics
can be derived, e.g. a model with pairwise additive interactions
like the DPD model. In section 3 we continue the discussion
on projection operators by showing how to apply the theory
to derive a DPD dynamics from a more detailed, typically
deterministic, simulation of a many-particle system.

2.2. The DPD model

In a many-particle simulation a natural choice of coarse
graining is to group particles in an underlying description of the
system, e.g. an atomistic model, into single spherical particles
(beads) positioned at the center of mass of the underlying
particles. Furthermore, since forces between particles in the
underlying system typically are pairwise and opposite, so that
the system obeys Newton’s third law, we assume that this also
holds for the effective forces on the coarse-grained particles.
This guarantees that the coarse-graining procedure does not
break the conservation of linear and angular momentum, which
in turn guarantees that the proper hydrodynamical behavior
will be preserved in the approximation. The forces can be

divided into three categories: conservative and dissipative
deterministic forces, and stochastic forces. The conservative
forces stem directly from the conservative interactions between
the microscopic particles in one bead with the particles in
another bead. The stochastic forces are the result of how
fast chaotic degrees of freedom of the particles in each bead
fluctuate around the motion of the center of mass and give
rise to rapidly fluctuating forces. Finally, the dissipative forces
represent the combined effect of the fast degrees of freedom on
the slow degrees of freedom. With particles positioned at ri ,
with velocities vi and momenta pi , the equations of motion for
a DPD model can be written as a system of Langevin equations

ṙi = vi ,

ṗi =
∑

j �=i

[
FC

i j + FD
i j + FS

i j

]
,

(8)

where FC
i j , FD

i j and FS
i j are the conservative, dissipative and

stochastic forces between particles i and j . In DPD, the
stochastic force between particles i and j take the form

FS
i j = √

2kBT ω(ri j )ζi jei j , (9)

where ri j is the distance between particles i and j , ei j is the unit
vector pointing from j to i , kB is Boltzmann’s constant and T is
the temperature in Kelvin. The scalar function ω(ri j ) describes
how the stochastic force depends on the distance between the
particles and ζi j is interpreted as a symmetric Gaussian white
noise term with mean zero and covariance

〈ζi j (t)ζi ′ j ′(t ′)〉 = (δii ′δ j j ′ + δi j ′δ j i ′)δ(t − t ′), (10)

where δi j and δ(t) are the Kronecker and Dirac delta functions,
respectively. This structure of the covariance matrix makes
sure that the stochastic forces between any pair of beads are
central forces with equal magnitude, thus preserving the linear
and angular momentum of the system.

In order to illustrate how the DPD dynamics acts as
a thermostat, and to further emphasize that the dissipative
and stochastic parts of the dynamics are not arbitrary but
are determined by the underlying dynamics through the
choice of projection, we first derive how the damping force
must be chosen in order to maintain the proper thermal
equilibrium distribution of velocities and positions for a
general Hamiltonian system, and then show how the radial
dependence of the stochastic forces determines the rate of
convergence to the equilibrium distribution, starting from an
arbitrary distribution over phase space.

2.3. Equilibrium dynamics

At thermal equilibrium the system is distributed according to
the canonical ensemble

ρeq(x, p) = Z−1e−H (x,p)/kBT , (11)

where Z is the normalization term for the distribution. Since
the equilibrium distribution depends only on the temperature
and the Hamiltonian of the system, the conservative forces
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uniquely determine the equilibrium distribution. The converse
is also true; when the conservative forces depend only on
the distance between particles, as in the DPD dynamics,
it is possible to use an iterative approach to uniquely
determine the conservative forces from the equilibrium radial
distribution [18–23] (alternatively, direct time averaging over
the fast degrees of freedom can be used, see, e.g., [24, 25]).
The methods for reconstructing effective potentials from the
RDF rely on the result by Henderson [26], that two pairwise
potentials resulting in the same RDF cannot differ by more than
an additive constant. The importance of this theorem lies in the
one-to-one correspondence between pairwise central force and
the radial distribution function.

The question is now: what is required of the forces
to maintain the equilibrium distribution? The equilibrium
ensemble is automatically invariant under the conservative
parts of the dynamics, since H is a constant of motion for
Hamiltonian dynamics (this is true for any ensemble where
the probability of finding the system in a given micro-state
depends only on the energy). The stochastic and dissipative
forces generally change the equilibrium distribution, except
if we choose the dissipative force FD

i such that the combined
contributions from the dissipative and stochastic forces cancel
when acting on the equilibrium distribution (the fluctuation–
dissipation relation). Writing down the Fokker–Planck
equation that describes the time evolution of the distribution
over the state space in the DPD equations of motion, and
requiring that the equilibrium distribution is a stationary point
of the dynamics, leads to [27]

0 = Le−H (x,p)/kBT

=
∑

i

∇pi ·
[
−FD

i + 1
2

∑

j

2kBT Ai j(x)∇p j

]
e−H (x,p)/kBT

=
∑

i

∇pi ·
[
−FD

i −
∑

j

Ai j(x)∇p j H
]
e−H (x,p)/kBT (12)

where L is the Fokker–Planck operator of the Langevin
equation (8) and Ai j is a 3×3 matrix given by the covariance of
the total forces on particles i and j . The equilibrium Fokker–
Planck equation (12) is commonly referred to as a fluctuation–
dissipation relation. Since it must hold for all points (x, p) in
phase space, the only possible solution for the dissipative force
is

FD
i = −

∑

j

Ai j(x)∇p j H. (13)

We briefly comment on the role of the coarse-graining
projection in determining the dissipative forces. In DPD it is
usually assumed that the projection is from a set of underlying
particles to their center of mass. If this is not the case, but a
more general projection is used, the equilibrium distribution of
the projected dynamics is not necessarily the Gibbs distribution
with a standard quadratic kinetic term. In particular, it may
mean that the momentum-dependent part of the distribution
depends also on space (i.e. that it is not possible to split
the distribution into a momentum term exp(− ∑

i p2
i /2mi kBT )

and a term that depends only on the positions of the DPD
particles). This, in turn, means that the damping force may
have a different shape than it has now (in particular, it may not
be simply linear in velocity). However, equation (13) is still

valid as long as there exists an energy function H such that the
Gibbs distribution describes the equilibrium.

For the DPD model the force covariance is given by

Ai j =
⎧
⎨

⎩

−ω2(ri j ) ei j ⊗ ei j when i �= j
∑

k �=i

ω2(rik) eik ⊗ eik when i = j , (14)

where ⊗ denotes an outer product and ω(r) determines
the radial dependence of the stochastic force. Inserting
equation (14) into equation (13) we can write the dissipative
force on a particle as a sum of pairwise dissipative forces:

FD
i =

∑

j �=i

FD
i j = −

∑

j �=i

ω2(ri j ) ei j · (vi − v j) ei j . (15)

Equation (15) was first derived by [28]. Note that, since FD
i

depends only on the velocity differences between interacting
particles, it is manifestly Galilean-invariant, and it is clear from
the derivation above that this is a direct consequence of the
covariance property of the stochastic forces (cf equation (10)),
which in turn stems from the assumption that Newton’s third
law applies.

2.4. Global convergence to equilibrium

We have seen that the conservative part of the dynamics is
determined by the equilibrium distribution, and the dissipative
part of the dynamics is determined by the dependence of the
Hamiltonian on the momentum of the beads in combination
with the structure of the stochastic forces. This leaves only the
stochastic forces to be determined in order to have a complete
description of the DPD dynamics. The equilibrium distribution
gives no hint here, since for any choice of stochastic force the
dissipative force will maintain the Gibbs distribution. Instead,
the choice of stochastic force will determine how the system
approaches equilibrium. In order to better understand the effect
of the stochastic forces on the path to thermal equilibrium,
it is illuminating to study the time evolution of the Kullback
distance [29] from the non-equilibrium ensemble ρ(x, p) to the
equilibrium distribution ρeq(x, p), given by

K (t) =
∫

dx dp ρ(x, p) ln
ρ(x, p)

ρeq(x, p)
. (16)

The Kullback distance is non-negative for all ensemble
distributions, and is zero if and only if the distribution
is identical to the equilibrium distribution. With strictly
Hamiltonian dynamics, K (t) is constant in time. Intuitively,
this is because the internal energy of the system needs to
change in order for the ensemble to approach the equilibrium
distribution, but the Hamiltonian conserves the energy. Using
the full Fokker–Planck equation of the DPD dynamics, we can
calculate the rate of change of K (t):

∂t K (t) = −kBT
∫

dx dp ρ

×
∑

i j

(
∇pi ln

ρ

ρeq

)T

Ai j

(
∇p j ln

ρ

ρeq

)
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= −kBT

2

∫
dx dp ρ

×
∑

i �= j

[
ω(ri j ) ei j · (∇pi − ∇p j

)
ln

ρ

ρeq

]2

(17)

which is negative, except when the system is at equilibrium.
Note that the change in K (t) does not depend directly on
the conservative forces, but on the structure of the stochastic
forces, ω(r). For any choice of ω(r), and from any initial
distribution ρ over the phase space for the particle system,
K (t) continues to decrease until ρ = ρeq, where K = 0.

Consider an initial distribution ρ(x, p) such that the
system is in equilibrium with respect to the momentum space,
but not with respect to position space (i.e. the momentum
dependence of ρ and ρeq is the same, but the position
dependence is different). In this case, we see that ∂t K = 0,
despite the system being out of equilibrium. This apparent
paradox is resolved by calculating to the second derivative
of K , to see that K is still a decreasing function of time
(∂2

t K < 0); such distributions correspond to saddle points in
the dynamics.

From this derivation it is apparent that the dissipative and
stochastic forces act as a thermostat to bring the system to the
equilibrium distribution, and that the rate at which this occurs,
and by which path it occurs, is determined by the structure
of the stochastic force (in combination with the conservative
force). Thus, if we want the transport properties of our DPD
system to match those of the underlying system, it is necessary
to find the correct choice of stochastic force. In section 3, we
describe a practical method for estimating the stochastic force
function ω(r) from observed trajectories of the system.

3. Estimating the stochastic force

Coarse-grained models of molecular systems are assumed
to represent the projected dynamics of an underlying more
detailed model. In the cases when the detailed dynamics can
be simulated, e.g. by the MD method, example trajectories of
the projected system can be extracted by applying an explicit
projection to the trajectories from the MD system. The detailed
simulations of smaller systems over shorter timescales can
then be used to calibrate, or as we do in this paper derive,
the effective interactions in the coarse-grained model. In this
section we show that if the resulting reduced model fulfills
the DPD ansatz (as formulated in section 2.2), the observed
trajectories contain enough information to estimate both the
deterministic and stochastic forces in the DPD equations.
As mentioned in section 2.3 it is well established how the
conservative force is determined from the equilibrium radial
distribution function. A detailed description of how to perform
this procedure is given in [20]. In this section we propose a
method for estimating ω(r), determining both the dissipative
and stochastic forces, under the assumption that an estimate of
the conservative force already exists.

3.1. Relation between DPD and the Mori–Zwanzig theory

In order to relate the stochastic force in the DPD equations of
motion to the observed behavior of the particles, consider a pair

of beads, i and j , a distance r from each other at time zero. As
a first approach (and a naive one as we will explain), we expand
the particle positions and momenta at a short time τ to obtain

〈δt pi · δt p j 〉r |τ = −2kBT ω2(r)τ + O(τ 2) (18)

where 〈 〉r denotes a conditional ensemble average over all
conformations where ri j = r , and δt p = p(τ ) − p(0). For
small τ , only the leading term will be important and can be
used to estimate ω2(r).

Equation (18) relies explicitly on the infinite timescale
separation between the stochastic and deterministic forces.
Such a separation can never hold in a natural system, since
the coarse-grained dynamics is smooth on the timescale of the
underlying dynamics; this means that, in the time region where
equation (18) can be used to estimate ω(r), the DPD ansatz is
not valid.

A better approach follows from the Mori–Zwanzig coarse-
graining scheme laid out in section 2.1, where the structure
of the stochastic force was formulated in terms of a Green–
Kubo relation (equation (6)). To make contact between the
general Mori–Zwanzig theory and the DPD model, the global
dynamics is split into pairwise interactions, and the relative
distances between pairs of particles and their relative velocities
are assumed to be slow variables. Then, by comparing the
stochastic term in the DPD model with (6) we find

ω2(r) = − 1

kBT

∫ ∞

0
dt〈δFFi(t) · δFF j(0)〉r , (19)

where δFFi is the difference between the projected total force
on the beads and the adiabatic average, i.e. equation (7)
adapted to the DPD ansatz. It is important to note that the
adiabatic average is defined by all the deterministic forces on
the reduced level, both conservative and dissipative.

Rather than attempting to calculate the integral in
equation (19) directly, we want to show how this can be
estimated from observed trajectories of the coarse-grained
system. Using the notation

δt (δFpi ) =
∫ τ

0
dt δFFi(t), (20)

we find the identity

2
∫ τ

0
dt〈δFFi(t) ·δFF j(0)〉r = ∂

∂τ
〈δt (δFpi ) · δt (δFp j )〉r . (21)

Thus, we can express ω2(r) in terms of the asymptotic slope of
the momentum change covariance:

ω2(r) = lim
τ→∞ − 1

2kBT

∂

∂τ
〈δt (δFpi ) · δt (δFp j )〉r . (22)

In practice it is not possible to take the limit to infinity, due
to the so-called plateau problem [30]. This arises because,
for large values of τ , the slope of 〈δt (δFpi ) · δt (δFp j )〉r

must necessarily vanish, since eventually all beads separate
and move independently. In addition, the measurements are
conditioned on a distance r , rendering the right-hand side of
equation (22) meaningless in the limit of large τ since the
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constant r cannot be defined. If the fast and slow parts of
the dynamics are sufficiently well separated, however, there
is a region where τ is large enough that the fast degrees are
in an approximate local (thermal) equilibrium determined by
the slow degrees of freedom, but small enough that the slow
degrees of freedom do not have time to change significantly. In
this region, 〈δt (δFpi ) · δt(δFp j )〉r is approximately linear and
the slope can be used to estimate the stochastic forces. If the
conditioning on r does not hold exactly, this can result in a
small perturbation of 〈δt (δFpi ) · δt (δFp j )〉r . How to deal with
this in practice will be explained in section 3.2.

3.2. Bootstrapping method

The operator δF introduces a dependence of the dissipative
force for the right-hand side of equation (22). The dissipative
force in turn depends on ω(r) (see equation (15)) and
equation (22) is therefore not closed. This can be resolved by
a ‘bootstrapping’ approach.

To estimate ω(r) we assume access to a set of coarse-
grained trajectories, with the same time resolution as the
underlying dynamics. ω(r) is found by solving equation (22)
iteratively, with, for example, ω(r) = 0 in the first iteration. In
the calculations, τ is typically chosen to be much larger than
the time steps in the underlying dynamics.

The iteration procedure starts with the calculation of
〈δt(δFpi ) · δt(δFp j )〉r as a function of τ for each value of
r . To obtain an estimate of ω(r), the time region where the
DPD ansatz is expected to be valid must be identified. This
can be done by visual inspection, as illustrated in figure 1.
For small values of τ (left section in figure 1), the coarse-
grained dynamics follows the underlying dynamics smoothly
and cannot be expressed in terms of DPD. Thereafter, the time
region of interest follows (middle section in figure 1). This
region should be approximately linear in τ , but this might not
hold for two reasons. First, the measurements are conditioned
on r being constant, but r is actually changing (slowly) with τ .
Second, unless the bootstrapping procedure has converged, the
dissipative force is not correct. Both these factors will affect
the shape of the curves in figure 1. To compensate for this, we
fit the curves to a second-order polynomial in the selected time
region. Under the assumption that the second-order terms are
mainly a result of the conditioning on r (and the dissipative
force when this has not yet converged), the coefficients of
the linear terms give for each value of r the estimate of
ω2(r). This procedure is repeated until convergence. As a
word of caution, we recommend not to calculate the direct
numerical derivative of the curves, as equation (22) suggests.
The numerical differentiation introduces noise and requires
significantly longer simulations to obtain good statistics. It
is much better to first do a (local) fit of the curve to a low-
order polynomial and then evaluate the derivative of the fitted
curve [31].

4. Numerical verification

A minimal requirement for the method to be useful is that it can
accurately identify the forces from a DPD simulation. In order

Figure 1. The figure shows a sketch of typical measurements of the
momentum change covariance. Each curve (circles) corresponds to a
given value of r and for clarity only a few values of r are shown. In
the left section, the dynamics of the coarse-grained system is on the
same timescale as the underlying dynamics and is therefore smooth.
The middle section shows the region where the DPD ansatz is
supposed to hold. This region should be approximately linear, but
can have higher-order terms, as explained in the text. A second-order
polynomial fit is used in this region (solid lines). An estimate of
ω2(r) is obtained from the coefficients of the linear terms.

to verify this, we use the method to recreate the ω(r) function
used in the dissipative and stochastic forces in a DPD system,
and compare it to the ω(r) used in the simulation. The DPD
simulations were set up using the standard implementation
from Groot and Warren [32], with a density of 4.0 and a time
step of 0.005. This time step is rather small, but we assume
here that for a real coarse-grained system, we will have access
to the microscopic dynamics, which evolves on a timescale
smaller than that usually used in DPD. The conservative force
was chosen as

FC
i j =

{
a

(
1 − ri j

)
r̂i j when ri j < 1,

0 otherwise,
(23)

with a = 25, and ω(r) was chosen as

ω(ri j ) =
{

σ
(
1 − ri j

)
when ri j < 1,

0 otherwise,
(24)

with σ = 3.0. These are standard parameter values chosen for
the DPD fluid to match the compressibility of water at room
temperature [32] and has been used extensively in mesoscopic
simulations of lipid membranes [33, 34].

A DPD simulation intrinsically has infinite timescale
separation between the fast degrees of freedom, represented
as noise with zero autocorrelation, and the slow degrees of
freedom. The limit where τ goes to infinity in equation (22)
should be interpreted as infinite time for the fast degrees of
freedom but, due to the timescale separation, this timescale is
still short for the slow degrees of freedom. If we had, instead
of a DPD simulation, used the trajectories of a coarse-grained
representation of a classical MD system as input to the method,
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Figure 2. Results from applying the bootstrapping method in
section 3.2 to phase space trajectories from a DPD simulation. Curve
A shows ω(r) after one iteration, starting with the initial guess
ω(r) = 0. Curves B and C show ω(r) after the second and fourth
iteration, respectively. The dashed line gives the exact value of ω(r)
as used in the DPD simulation.

the timescale separation would not be as pronounced as in
DPD. We therefore wish to demonstrate here that it is possible
to obtain good estimates of ω(r) from equation (22), not only
in the τ ≈ 0 limit, which is attainable in DPD but generally
unavailable for a coarse-grained system, but also for larger
values of τ . By using the bootstrapping procedure outlined
above for simulation data in the region τ ∈ [0.1, 0.25], we
show in figure 2 the sequence of resulting ω(r) curves for
the first bootstrapping steps. Convergence towards the correct
functional form of ω(r) is fast. Within the first four iterations,
the method has approached the correct ω values used in the
DPD simulation for most r values. The conservative forces
prevent the beads from coming arbitrarily close. This leads
to a lack of data for small values of r and explains the poor
performance of the method in this region. For these values of
r , we recommend to either set ω(r) to zero, or to use the value
ω(r∗), where r∗ is the smallest value of r with reliable statistics
in the simulations.

To emphasize the importance of removing the full
deterministic force (i.e. both conservative and dissipative
forces) from the total force when calculating δt(δFpi ), we show
in figure 3 the slope of the momentum change covariance, as
defined in equation (22), for two different cases. In the first
case (solid lines), δFFi is defined as

δFFi = Fi − FC
i − FD

i , (25)

and in the second case (dashed lines)

δFFi = Fi − FC
i , (26)

where Fi is the total force acting on particle i , FC
i is the

conservative DPD force and FD
i is the dissipative DPD force. In

the limit of τ → 0, both methods converge to the correct value
of ω(r), as can be seen from figure 3, but with δFFi defined by
equation (25), there exists a plateau of small τ values for which

Figure 3. The slope of the momentum change covariance as a
function of τ for different values of r . The curves are calculated from
phase space trajectories of two DPD simulations, using different
definitions of δFFi . The solid and dashed lines correspond to using
equation (25) and equation (26), respectively. The different curves in
the figure correspond to the r values 0.245 (top), 0.365, 0.485, 0.605
and 0.725 (bottom). The conservative force was set to 0 in the
simulations to demonstrate as clearly as possible the effect of not
removing the dissipative force when calculating δt (δFpi).

the force covariance is approximately constant. Measuring
ω2(r) anywhere in this region gives approximately the correct
value and, as shown previously, using τ values as far out as
τ ∈ [0.1, 0.25] still reproduces ω(r) using the bootstrapping
procedure.

5. Discussion

We have discussed how to derive a dissipative particle
dynamics from a detailed microscopic system, for example a
molecular dynamics simulation. As a coarse-grained model of
a mechanical system, DPD has several advantages compared
to many other models. Most importantly, by construction
the DPD dynamics respects fundamental symmetries of the
underlying dynamics; it is Galilean-invariant and therefore
both linear and angular momentum are locally conserved by
the interactions.

In this paper, we have established two important properties
of our method. First, that the framework is consistent; if the
dynamics is on the DPD form, we can use the method to
accurately reconstruct all terms in the equations of motion.
Through our adaptation of the Mori–Zwanzig projection
operator methods, we argue that this provides a clear and
quantifiable connection to the underlying degrees of freedom.

Second, the method successfully reconstructs the dynam-
ics without using the shortest timescale of the particle trajec-
tories. If the detailed model shows a strong timescale sepa-
ration it is possible to use equation (18) directly to estimate
the effective stochastic interactions on the coarse-grained level.
In many cases however—e.g. when DPD is used as a coarse-
grained representation of a molecular system—the timescale
separation is not very significant. It is therefore essential that
our method is able to reconstruct the dynamics without using
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the correlations of the system at the shortest timescale, which
we demonstrate in figure 1.

The price we pay for not using the short-time properties
is that we cannot use a direct method to measure the shape of
ω(r), but are forced to use an iterative scheme. This is because
ω(r) is estimated from the stochastic force, and in order to
extract this force from the dynamics we need to subtract the
influence of the deterministic (conservative and dissipative)
forces from the particle trajectories, which then depend on
the ω(r) that we try to estimate in the first place. However,
we have found that, starting from the initial ω(r) = 0, and
using the estimation as a fixed-point scheme, leads to rapid
convergence (figure 2); the likely cause for this is that the
dissipative component of the deterministic force is typically
dominated by the conservative component, so that already the
first iteration leads to an ω(r) not far from the correct one.

The main advantage of our method is perhaps that it
gives the appropriate magnitude of dissipative and stochastic
forces for the coarse-grained system to be consistent with the
underlying dynamics; hence, if the coarse-grained dynamics is
averaging, so that fluctuations are not important, the resulting
ω(r) ≈ 0, and if the rapidly fluctuating degrees of freedom act
as white noise on the coarse-grained dynamics, ω(r) captures
this effect. This is in contrast to most thermostats used in
MD, where in principle the thermostat is used to stabilize the
dynamics and is not considered to be an integral part of the
dynamics.
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[1] Nosé S 1984 A unified formulation of the constant temperature
molecular dynamics methods J. Chem. Phys. 81 511–20

[2] Hoover W G 1985 Canonical dynamics: equilibrium phase
space distributions Phys. Rev. A 31 1695–703

[3] Andersen H C 1980 Molecular dynamics at constant
temperature and pressure J. Chem. Phys. 72 2384–93

[4] Parrinello M P and Rahman A 1980 Crystal structure and pair
potentials: a molecular dynamics study Phys. Rev. Lett.
45 1196–9

[5] Green M S 1952 Markoff random processes and the statistical
mechanics of time-dependent phenomena J. Chem. Phys.
20 1281–95

[6] Kubo R 1957 Statistical-mechanical theory of irreversible
processes. I. General theory and simple applications to
magnetic and conduction problems J. Phys. Soc. Japan
12 570–86

[7] Soddemann T, Dünweg B and Kremer K 2003 Dissipative
particle dynamics: a useful thermostat for equilibrium and
nonequilibrium molecular dynamics simulations Phys. Rev.
E 68 046702

[8] Mori H 1958 Statistical–mechanical theory of transport in
fluids Phys. Rev. 112 1829–42

[9] Zwanzig R 1960 Ensemble method in the theory of
irreversibility J. Chem. Phys. 33 1338–41

[10] Allen M P and Tildesley D J 1987 Computer Simulation of
Liquids (Oxford: Clarendon)

[11] Just W, Gelfert K, Baba N, Riegert A and Kantz H 2003
Elimination of fast chaotic degrees of freedom: on the
accuracy of the Born approximation J. Stat. Phys.
112 277–92

[12] Mori H 1965 Transport, collective motion, and Brownian
motion Prog. Theor. Phys. 33 423–55

[13] Zwanzig R and Bixon M 1970 Hydrodynamic theory of the
velocity correlation function Phys. Rev. A 2 2005–12

[14] Zwanzig R 2002 Nonequilibrium Statistical Mechanics
(Oxford: Oxford University Press)

[15] Hoogerbrugge P J and Koelman J M V A 1992 Simulating
microscopic hydrodynamic phenomena with dissipative
particle dynamics Europhys. Lett. 19 155–60
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[28] Español P and Warren P 1995 Statistical mechanics of
dissipative particle dynamics Europhys. Lett. 30 191–6

[29] Kullback S 1959 Information Theory and Statistics
(New York: Wiley)
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